生物信息學服務
Alpha多樣性分析
【添加時間:2016-09-12 09:22:05】【來源:】【作者:dggadmin】
Alpha多樣性分析主要包括Shannon多樣性指數(shù)、Chao1豐富度指數(shù)、Simpson指數(shù)等多樣性指數(shù)的計算,以及下列圖表的繪制。
圖1 稀釋曲線
橫軸:從某個樣品中隨機抽取的序列數(shù)目(測序深度)。
縱軸:基于該測序條數(shù)能構建的OTU數(shù)量。
圖2 Shannon-Wiener 指數(shù)曲線
橫軸:從某個樣品中隨機抽取的測序條數(shù)。
縱軸:Shannon-Wiener 指數(shù),用來估算群落多樣性的高低。
縱軸:樣品(組)中的OTU數(shù)目。
1. 稀釋曲線 (Rarefaction Curve)
稀釋曲線是指從樣本中隨機抽取一定數(shù)量的個體,統(tǒng)計出個體所代表物種數(shù)目,以個體數(shù)與物種數(shù)來構建的曲線。曲線趨于平坦說明測序深度合理,更多的測序量對發(fā)現(xiàn)新OTU的邊際貢獻很??;反之則表明繼續(xù)測序還可能產(chǎn)生較多新的OTU。圖1 稀釋曲線
縱軸:基于該測序條數(shù)能構建的OTU數(shù)量。
2. Shannon-Wiener 曲線
Shannon-Wiener 曲線反映樣品中微生物多樣性的指數(shù),利用各樣品的測序量在不同測序深度時的微生物多樣性指數(shù)構建曲線,以此反映各樣本在不同測序數(shù)量時的微生物多樣性。當曲線趨向平坦時,說明測序數(shù)據(jù)量足夠大,可以反映樣品中絕大多數(shù)的微生物物種信息。圖2 Shannon-Wiener 指數(shù)曲線
縱軸:Shannon-Wiener 指數(shù),用來估算群落多樣性的高低。
3. Rank-Abundance 曲線
Rank-Abundance 曲線用于同時解釋樣品多樣性的兩個方面,即樣品所含物種的豐富程度和均勻程度。物種的豐富程度由曲線在橫軸上的長度來反映,曲線越寬,表示物種的組成越豐富;物種組成的均勻程度由曲線的形狀來反映,曲線越平坦,表示物種組成的均勻程度越高。圖3 Rank-Abundance 曲線
橫軸:OTU 相對豐度含量等級降序排列。縱軸:樣品(組)中的OTU數(shù)目。
上一篇:16S/18S/ITS測序標準分析
下一篇:非約束排序(PCoA/NMDS等)